Wednesday, January 27, 2010

To intervene or not to intervene: this is a real question

Should land managers actively manipulate the structure and function of ecosystems within protected areas? Is intervention appropriate to protect or maintain native biodiversity and natural processes in areas such as national parks and wilderness areas? These are the questions that stem from a new paper by Richard Hobbs and others in Frontiers in Ecology and the Environment. US national parks and wilderness areas have legislative mandates to maintain ‘naturalness’, but what does this mean in the context of dynamic ecosystems with current and future changes including invasions by nonnative organisms and climate change?

Hobbs and his colleagues challenge concepts of naturalness and propose several ‘guiding principles’ for stewards of national parks and wilderness. They suggest that more useful concepts for managing protected areas relate to ecological integrity and resilience. Concepts of ecological integrity have been adopted by Parks Canada and relate to maintaining ecosystem components. Resilience concepts focus on the ability of a system to “absorb change and persist” without undergoing a “fundamental loss of character”. While maintaining ecological integrity in the face of global changes may - by definition - require protection of species, maintaining ecological resilience tends to focus more attention on ecosystem function “over preserving specific species in situ”.

Rather than protecting an area to maintain naturalness, focusing on ecological integrity and resilience acknowledges that a diversity of approaches - from non-intervention to actively managing systems - may be required. The flexibility in this view, demands that conservation planning span gradients of land uses across landscapes. Management objectives and success need to be re-evaluated in an adaptive and experimental framework, which requires careful and robust monitoring.

At The Wilderness Society and specifically here in Montana, these very questions are being wrestled with in terms of forest restoration, fire management, and climate change. Current forest conditions have been shaped by historic logging practices and fire suppression leading to altered structure and function – including increasing the severity of fires. Through active management, including removing small diameter trees and lighting prescribed fires, managers hope to restore forests and fire intensities to conditions more closely resembling those that historically occurred. Much of the research on restoration was conducted in dry forests in the American Southwest where low-severity fires occurred across large areas. However, in the Northern Rockies, many forests were shaped by a ‘mixed severity’ fire regime, where fires crept along the forest floor in some areas and torched trees in others. In many cases, these forests have not been fundamentally altered and need only the return of fire to restore their resilience. In other cases, forests are recovering from past logging practices and may benefit from thinning to restore a fire-resilient structure.

To return to the paper at hand: what is the appropriate level of intervention to maintain ecological integrity and resilience given past forest management and future climate change? If the current forest lacks integrity (novel stand structure) and resilience under a predicted climate of warmer, drier conditions, what is the appropriate level of management? While The Wilderness Society continues to work with diverse partners to answer these questions, one thing is clear: whatever actions take place, they need to be conducted with humility in an experimental framework that includes sufficient ecological monitoring. For the ‘experiment’ to be most helpful, we should maintain adequate hands-off “controls” along with the “treatments” to allow us to gauge the effects of intervention.

Richard J Hobbs, David N Cole, Laurie Yung, Erika S Zavaleta, Gregory H Aplet, F Stuart Chapin III, Peter B Landres, David J Parsons, Nathan L Stephenson, Peter S White, David M Graber, Eric S Higgs, Constance I Millar, John M Randall, Kathy A Tonnessen, Stephen Woodley (2009) Guiding concepts for park and wilderness stewardship in an era of global environmental change. Frontiers in Ecology and the Environment e-View.
doi: 10.1890/090089

Tuesday, January 19, 2010

Timing is everything: global warming and the timing of species interactions

ResearchBlogging.orgWhile an obvious affect of climate change will be changes in the distributions or range sizes of species, more insidious and likely more consequential will be how species interactions are affected by changes in the timing of growth and reproduction. These changes in an organism's life cycle, or phenology, can create mismatches between an organism's need and resource availability or the readiness of coevolved partners -such as plants and pollinators.

In an 'Idea and Perspective' paper in Ecology Letters, Louie Yang and Volker Rudolf set out a new framework to examine the effects of phenological shifts on species interactions. They argue that one cannot understand or predict the fitness consequences of a phenology shift without knowing how interacting species' phenologies are also influenced by environmental changes. The consequences of phenological shifts are changes in fitness, and the question is: how would one go about assessing the fitness effects of phenological changes on interactions? This is where this paper really hits its stride. Yang and Rudolf set out a new conceptual framework for studying the fitness consequences of phenological shifts. They make the case that an experimental approach is required to test the three likely scenarios. The first is that there are no changes in phenology -that is, measuring the fitness levels of the two interacting species under stable conditions. Second, you induce an experimental shift in the timing of one of the species. For example, in a plant-herbivore interaction, germinate the plant earlier and when the herbivore normally has access to the plant, the plant will be older. What are the fitness changes associated with this shift? Finally, you can shift the timing of the other species relative to the first. In our example, the herbivore has access to younger plants and again are there fitness consequences?

Yang and Rudolf call the full combination of possible fitness effects, across a number of timing mismatches, 'the ontogeny-phenology landscape'. By mapping fitness changes across this ontogeny-phenology landscape, researchers can offer better predictions, on top of just changes in range size or habitat use, about the possible affects of climate change. The obvious question, and Yang and Rudolf acknowledge this, is how to extend two-species ontogeny-phenology to multi-species communities. Of course, extending two-species interactions to communities is a question that plagues most of community ecology, but I think the solution is that researchers who know their systems often have intuition about the major players, and thus those species where phenology shifts should have disproportionate effects on other species. Such species could be the place to start. Another strategy would be a food web type approach, where species are lumped into broader trophic groups and we ask how shifts in certain trophic groups affect other groups.

Regardless of how to extend this framework to multispecies assemblages, I see this paper as likely to be very influential. It gives researches a new focus and framework, where specific predictions about climate change can be made.

Yang, L., & Rudolf, V. (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions Ecology Letters, 13 (1), 1-10 DOI: 10.1111/j.1461-0248.2009.01402.x

Thursday, January 14, 2010

Plant genotypic diversity supports pollinator diversity

ResearchBlogging.orgResearch over the past 20 years has shown that plant communities with greater diversity maintain higher productivity, greater stability and support more diverse arthropod assemblages. More recently, several experiments have shown that interspecific diversity (namely genotypic differences) also affects community functioning. Pollination is often considered an essential function, and does plant genotypic diversity affect pollinator diversity and frequency?

In a recent paper in PLoS ONE, Genung and colleagues test whether plant genotypic diversity affects pollinator visits. They use an experimental system set-up by Greg Crutsinger that combines multiple genotypes of the goldenrod, Solidago altissima, and record pollinator visits over two years. Experimental plots contained 1, 3, 6, or 12 genotypes of S. altissima. After accounting for differences in abundance, Genung et al. show that as genotypic diversity increases, both pollinator richness and number of visits to the plot significantly increase. This increase is greater than expectations of randomly simulated assemblages combining proportional pollinator visits from monocultures.

The previous research at the species-level has made a persuasive rationale to protect species diversity in order to maintain ecosystem functioning. Now, research like this is making a case that there are consequences for not explicitly considering genetic diversity in conservation planning and habitat restoration.

Genung, M., Lessard, J., Brown, C., Bunn, W., Cregger, M., Reynolds, W., Felker-Quinn, E., Stevenson, M., Hartley, A., Crutsinger, G., Schweitzer, J., & Bailey, J. (2010). Non-Additive Effects of Genotypic Diversity Increase Floral Abundance and Abundance of Floral Visitors PLoS ONE, 5 (1) DOI: 10.1371/journal.pone.0008711

Thursday, January 7, 2010

Double or nothing

As I finished my undergrad career and started thinking about graduate school, I was totally infatuated with the chromosomal speciation of treefrogs in the genus Hyla. Hyla versicolor and H. chrysoscelis, the 'gray treefrogs', have similar geographic distributions and look almost identical - except that one is a tetraploid version of the other. The increase in genome size is associated with a slight increase in cell size, which has trickle-down effects into physiology, the sound of their call, and other ecological factors, and of course they are reproductively isolated. As it turns out, Margaret Ptacek and colleagues were unraveling this mystery at the genetic level just as I was learning of it, and while I was disappointed not to be able to explore this for my graduate work, Margaret made up for it by paying for all the drinks when I visited Clemson a few years back.

So it was with considerable interest that I stumbled across one of the first tables of contents of the new year, in BMC Evolutionary Biology. Two co-occurring populations of the diatom Ditylum brightwellii, it turns out, differ in genome size. In this case, the belief is that there is a single taxonomic species harboring a very recent genome duplication polymorphism (which are likely cryptic species). Of course, a species by any other name... well, that's the problem isn't it? In the world of diatoms, according to Koester and colleagues, the 'barcode' standard is to use the 18S rDNA gene sequences and silica cell wall morphology in diagnosing species. However, already armed with evidence that two substantially distinct populations could be identified with the more rapidly-evolving ITS gene region, these researchers explored how differences in reproductive rates and size distributions might be associated with genome size.

See, diatoms are the petri dishes of the natural world. In order to reproduce, each side of the interlocking silica case separates and generates a new nested case. One of the offspring of this fission will be the same size as the parental individual, the other will be slightly smaller - the smaller of the two original cell walls, with an even smaller one nested within. At least that is how I understand it. Over time, these clonal lineages reduce substantially in size, and cell size is eventually limited by genome size; sexual reproduction then allows them to regain a larger cell size and the process repeats. So, the life history of this species requires an interesting interaction among the genome (which places a lower bound on cell size, and a lower bound on reproductive rate) and the population.

In Ditylum, Koester et al. were able to show that there are not only two very distinct genetic lineages, but that the one that is regionally localized to Puget Sound appears to have been generated through genome duplication. That is, there is a cosmopolitan species, and an offshoot lineage that was formed through some form of genome duplication, with concomitant changes in cell size, rates of population growth, and reproductive isolation. Koester et al. conclude that these lineages are cryptic species, and that this form of isolation may be common in marine diatoms.

More generally, this shows another way in which our understanding of biodiversity is changing rapidly thanks to molecular diversity analysis. The latest term to be coined by John Avise, biodiversity genetics, reflects the fact that we must now consider all of the new ways in which this technology can accelerate the rate of discovery in our natural world. Taxonomists trained in the morphology and phenotypic diversity of life are few; certainly too few to keep up with growing scientific collections, and the bottleneck in describing species can be a difficult one for management and conservation. The '18S or bust' approach in diatoms may be one standard that will change as more studies like this one, out of Armbrust's lab at Washington, illuminate how dynamic biological diversity can be.

Tuesday, January 5, 2010

Predicting invader success requires integrating ecological and land use patterns.

Disclaimer, this was modified from an editorial I wrote for the Journal of Applied Ecology.

ResearchBlogging.orgIn the quest to understand species invasions, we often try to link the abundance and distribution of invaders to underlying ecological processes. For example, oft-studied are the links between exotic diversity and native richness or environmental heterogeneity. Seemingly independently, research into how specific land use or management activities affect invasion dynamics is also fairly common. While both research strategies are of fundamental importance, not often recognized, or at least explicitly studied, is that both ecological patterns and management activities simultaneously affect invasion success. Thus a truly integrative approach to understanding invader success must take into account variation in ecological communities and abiotic resource avalibility as well as land use patterns at multiple spatial scales. Such an approach is necessary if ecologists wish to predict potential invader abundance, spread and impact.

Diez et al. Examine how environmental and management heterogeneity interact to influence patterns of Hieracium pilosella (Asteraceae) inasions in the South Island of New Zealand. The spread of H. Pilosella in New Zealand is threatening native habitats (tussock fields) and the livestock grazing industry. Diez et al. Asked how environmental and management regimes affect H. Pilosella abundance and distribution across six large farms on the South Island. This is an interesting and important question, not just because they are examining how human-caused and ecological variation interact to affect H. Pilosella dynamics, but also because these sources are heterogeneity are realized at different spatial scales.

Diez et al. show that the abundance and distribution of H. Pilosella was significantly affected by the interaction of habitat type (i.e., short vs. tall tussocks) and farm management strategies (i.e., fertilization and grazing rates). At larger scales, H. Pilosella was more abundant in tall tussock habitats and was unaffected by fertilization, while in short tussocks, it was less abundant in fertilized patches. At small scales, H. Pilosella was less likely to be found in short tussocks with high exotic grass cover and high productivity (measured as site soil moisture and solar radiation). Conversely, in tall tussocks, H. Pilosella was more likely to be found on sites with high natural productivity. Diez et al. were able to tease these complex causal mechanism apart by using Bayesian multilevel linear models, for which they included example R code in an online appendix.

While it is a truism in ecology to say that heterogeneity affects ecological patterns, this paper deserves mention because they convincingly show that the spread of noxious exotic plants in a complex landscape, can potentially predicted by understanding the invader success in different habitat types and land management strategies. In their case they show how human activities, which were not designed to affect H. Pilosella, can strongly affect abundance in different habitat types. This type of approach to understanding invader dynamics can potentially arm managers with the ability to use existing land use strategies to predict how and where further invader targeting would be most useful.

Diez, J., Buckley, H., Case, B., Harsch, M., Sciligo, A., Wangen, S., & Duncan, R. (2009). Interacting effects of management and environmental variability at multiple scales on invasive species distributions Journal of Applied Ecology DOI: 10.1111/j.1365-2664.2009.01725.x